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During the last decade, porous media/mixture models have been used to simulate soft hydrated biological 
structures and tissue-engineered materials.  The stresses; fluid pressures; deformations; heat, fluid, and mobile 
species transport; and biological factors affect growth, remodeling, and cellular homeostasis.  Finite element 
models (FEMs), based upon experiments, can predict these fields to provide an understanding of normal or 
pathological conditions and optimize prosthetic or sensor designs.     

A general “EMPMTH” (Electro-mechano-chemical Mixed Porous Media Transport Heating) continuum theory 
and FEMs (extension of [1]) are presented including geometric nonlinearity in anisotropic, fluid-saturated 
porous media (porosity,  or ; fixed charge density, FCD; /fn dV dV= 0 0 /fn dV dV= 0 /F F fc dn dV=
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or 
).  The response of the incompressible porous solid (s) is arbitrary (e.g., fibrous tissue matrix or 

crushable foam).  The fluid (f) is incompressible with dissolved mobile charged species ( ).  

“Primary” fields are displacements,  and generalized potentials, 
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include fluid pressure, fp ; electrical potential, eµ ; concentrations, cα  (or c Jncα α= ); and temperature, 
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 (relative electric current).  An “effective stress principle” and generalized Darcy law 
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, and  for an extended porohyperelastic Fung formulation.  Electro-neutrality 

is .  Elemental FEM interpolations (Galerkin formulation) are 

*( , , , h
klE J cξν )ϕ ϕ=

0=0
Fc+ uN uu = , ue = B u , 

ξ
ξ

ξ*ν = N ν , and ξ ξ
ξB νe =  yielding elemental residuals 0dV dA= − =∫ ∫ T ( )

u
σN t 0T

u uB Sψ  and 

 that are assembled to global form, boundary and initial 
conditions imposed, and integrated in time (iterative predictor-corrector algorithms).         
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DIFFUSION -CONVECTION  

Results include steady or cyclic porohyperelastic ABAQUS FEMs and EMPMTH 
FEMs of diffusion-convection in a porohyperelastic solid with finite strains (see right); 
and electrical, chemical, and mechanically coupled field problems with osmosis and 
FCD distributions in multi-layered material interfaces.  EMPMTH FEMs have 
applications in biomechanics and tissue engineering (e.g. cardiovascular, orthopedic, 
and local drug delivery systems) and for analyses of coupled transport in soils and 
geomechanics.                                                                                                                       Concentration   c(X,t)             
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